UCRL-JC-131349
PREPRINT .

Petaflop Computing:
Planning Ahead

James R. McGraw

This paper was prepared for submittal to the

Petaflop Operations Working Review (POWR) Workshop
Bodega Bay, CA
June 2-5, 1998

June 17, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned tights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product endorsement purposes.




Petaflop Computing: Planning Ahead

James R. McGraw
Lawrence Livermore National Laboratory

This talk considers the problem of defining success criteria for petaflop computers.
Current expectations for teraflop systems show an alarming acceleration of a trend we
have seen for many years in high performance computers. Namely, it is becoming
increasingly difficult to effectively use the computational capability of these machines. If
this situation is not reversed quickly, the term “petaflop computer” may simply mean the
next fastest computer that we cannot use. In many cases, we have some understanding of
why we cannot achieve anywhere near the peak performance of these machines on real
applications. Effective use of these resources is a highly complex optimization problem
that must be solved over all of the different components of cach application program.
Given this complexity, it is the responsibility of our community to better quantify our
progress in developing high performance systems with more meaningful metrics than
simply “peak floating point operations per second.” We need to develop metrics and
tools that help us to enhance the end-to-end performance of solving large scientific
applications on these advanced machines.

Based on current trends. teraflop systems of next few years could render the term
“petaflop” practically meaningless. Going back to the days of vector supercomputing, it
was common to find that large scientific applications could only achieve 30-70% of the
peak rated speed of a machine. With distributed memory systems, the percent of peak
often has been seen to be between 15-40%. For the new class of teraflop systems, some
application developers have suggested that delivered performance on real scientific
applications could be as low as 1-10%.

We have a general understanding of the causes of poor performance. As we scale up
these systems, not all components are scaling at the same rate. Most architectures have
included deep instruction pipelines, multi-level caches, greater numbers of processors,
and more highly distributed partitions of main memory. At the same time. the
computational algorithms have become less regular and less predictable in terms of their
resource requirements. Techniques like adaptive meshes, unstructured grids, and Monte
Carlo transport pose serious problems for dynamic load balancing and global
communications. In the middle of these dramatic changes, key software tools like
compilers and run-time systems have not been able to provide adequate solutions, so they
continue to be a critical portion of the problem.

Given the “sins of the teraflops,” the focus of improved metrics must center somehow on
better conveying what level of performance a complete application can expect to achieve.
The performance numbers described above depend precisely on problems being solved
and the algorithms being used to solve them. Embarrassingly parallel algorithms and
applications can often exceed these numbers while algorithms with non-trivial sequential
sections will be much worse. The simple metric of FLOPS completely fails to convey



how well (or poorly) someone will be in using these machines to solve large scientific
problems. If we are going to convince scientists and Congress to invest in petaflops, we
will need to more clearly communicate what kind of true performance on real problems
can be expected. '

We can translate this long-term need into some specific areas of work that require
immediate attention. These areas can help build up our understanding of the end-to-end
performance of large applications on these machines. In this case, end-to-end
performance refers to the process of evolving application demands into numerical
algorithms that are translated into machine form and executed on a complex platform
including processors, memory, networks, mass storage and /O devices. One step to
understanding end-to-end performance is to better characterize the potential performance
of applications in terms of key system parameters. For example, what is the data locality
of an algorithm as the size of the problem increases (possibly expressed as the working
set miss rate as a function of the working set size). This kind of information could have a
very beneficial impact on both cache hit rates and data partitioning across nodes.
Likewise, another key step is in characterizing the performance of the full computer
system in terms of relevant application parameters. For a given machine configuration,
what level of cache hit rates, compute-to-communicate ratios, and compute-to-1/0 ratios
must be sustained to achieve different efficiency levels? This type of information flow
between the applications and architecture developers will be necessary to enable even
reasonable utilization of petaflop systems.



 Lawrence Livermore National Laboratory




ey - r 1 . gt 1y
s\ i y ;:‘\ g &, % oy .\3_..) \‘\ :_‘-w__\‘ i 'r:. % ‘ . \‘, o

e _Teraﬂop systems could render t_he-.-_term “Pota ﬂop”'

0 Effectlve utlllzatlon wﬂl reach an all t1me low.

o $ 64, 000 quest1on here 18 all the potentlal gomg?f‘_,_

"'_.___::'-;ommumty must quantlfy pregress w1th more_




o 4 ; - { oy "3 i

4 :-"a oy AR IR e O L e g L R TR P e R Y i g AL
i 4 .\’ 1 % }‘,.‘ Fond i L S g | % ‘? feag { A e 8 g g
b, Ty v Lot o i} w b 3, A4

o

e

Commoditv-Components” to d«
LOoMmmodity-LoInpoLieiits o Uo
; : s ik 3

.-:_-.Queshon to ASCI APPS

. _'._'__'_For one of your mg___}._.;_-:ASCI apphcatmns, attemptmg
 touse an entire Tflops machine, what percent of the

mythlcal peak speed do you expect to achleve’? "




e To ach1eve above 10% use on ASCI Red Tflops use_.i.:
assernbly language for key loops. (Peak 25 %) -

0 sPPM code (ASCI Blue ID benchmark) peak use

| machmes, the predlctlons for usage are Very Iow




‘o D1V1de instruction breaks 1nstruct10n pipeline
o Local memory bandW1dth lnadequate for cache rates-j.;.-_r.;j?j;ﬁ-j;.-j;:-'
” 0 Poor node” compﬂer_5:-;performance |

D _,f_.j.-namlc loaf_ mbalances

::"'Software messag_ passmg overhead




e ‘Change :Computatiorial--'algorithms / .-ﬁiethods :

0 Reorgamze data layouts / umts of parallel work .

0 Extend compﬂer 0pt1mlzat10ns .
. :?fj-f:_}_-*:_':'-;f:?_:._._f.o Expand tools for dynamlc load-balancmg

e ;:?f'--{'f?ngeduce off-ch1p commumcatlon & synchromzatwn




Projected




0 Ingredlents for the r1ght metrlcs are Obvmus:_

> Total system cost _
- . Problem type and s1ze that is solvable .

D efmmg them well 1s a tough challenge

Y __ Selhng them to the commumty, even harder'_ﬂ?:%_:




b inan

T

ion

ibut

=
e
e
o
Q
]
2
7))
4
e
e
>
r.
s
N
&h
O
(&)
Q
N













° The sins of the TerafIOps wﬂl 1mpact the push for

Petaﬂ()ps




